

Problem Solving as Search

Looking at problems as a space of
possibilities where we have to discover
solutions by looking at a wide variety of
paths.

Formal Specification
Initial state

Starting point from which the agent sets out

Actions (operators, successor functions)

Describe the set of possible actions

State space

Set of all reachable states

Path

Sequence of actions leading from one state in
the state space to another

Goal test

Determines if a given state is the goal state

Understanding Costs
Solution

Path from the initial state to a goal state

Search cost

Time and memory required to calculate a solution

Path cost

Determines the expenses of the agent for executing
the actions in a path

Sum of the costs of the individual actions in a path

Total cost

Sum of search cost and path cost

Overall cost for finding a solution

Terminology
Search tree

Generated as the search space is traversed

The search space itself is not necessarily a tree, frequently it is a graph

The tree specifies possible paths through the search space

Expansion of nodes

As states are explored, the corresponding nodes are expanded by
applying the successor function

This generates a new set of (child) nodes

The fringe (frontier) is the set of nodes not yet visited
Newly generated nodes are added to the fringe

Search strategy

Determines the selection of the next node to be expanded

Can be achieved by ordering the nodes in the fringe
E.G. Queue (FIFO), stack (LIFO), “best” node w.R.T. Some measure (cost)

General Approach
Traversal of the search space

From the initial state to a goal state

Legal sequence of actions as defined by successor function
(operators)

General procedure
Check for goal state

Expand the current state

Determine the set of reachable states

Return “failure” if the set is empty

Select one from the set of reachable states

Move to the selected state

A search tree is generated
Nodes are added as more states are visited

A very abstract example

The graph describes the search (state) space
Each node in the graph represents one state in the search space

E.G. A city to be visited in a routing or touring problem

This graph has additional information
Names and properties for the states (e.G. S, 3)
Links between nodes, specified by the successor function

Properties for links (distance, cost, name, ...)

S	

3	

A	

4	

C	

2	

D	

3	

E	

1	

B	

2	

G	

0	

1	 1	 1	 3	

1	 3	 3	 4	

5	

1	

2	

2	

Graphs and Trees

S	

3	

A	

4	

C	

2	

D	

3	

E	

1	

B	

2	

G	

0	

1	 1	 1	 3	

1	 3	 3	 4	

5	

1	

2	

2	

• The tree is generated by

traversing the graph

• The same node in the graph

may appear repeatedly in the

tree
• The arrangement of

the tree depends on

the traversal strategy

(search method)

• The initial state

becomes the root

node of the tree

• In the fully expanded

tree, the goal states

are the leaf nodes

• Cycles in graphs may

result in infinite

branches

General Search

function GENERAL-SEARCH(problem, QUEUING-FN) returns solution

nodes := MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))

loop do

if nodes is empty then return failure

node := REMOVE-FRONT(nodes)

if GOAL-TEST[problem] applied to STATE(node) succeeds

then return node

nodes := QUEUING-FN(nodes, EXPAND(node,

OPERATORS[problem]))

end

Our Metrics

Completeness
If there is a solution, will it be found

Optimality
The best solution will be found

Time complexity
Time it takes to find the solution
Does not include the time to perform
actions

Space complexity
Memory required for the search

Uninformed Search

Breadth-first
Depth-first
Uniform-cost Search
Depth-limited Search
Iterative Deepening
Bi-directional Search

Breadth First

All the nodes reachable from the current node are
explored first

Achieved by the TREE-SEARCH method by
appending newly generated nodes at the end of the
search queue

1

2 3

1

2 3

4 5

1

2 3

4 5 6 7

1

2 3

4 5 6 7

8 9

1

2 3

4 5 6 7

8 9 10 11

1

2 3

4 5 6 7

8 9 10 11 12 13

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Uniform Cost

The nodes with the lowest cost are explored first

Similar to BREADTH-FIRST, but with an evaluation
of the cost for each reachable node

G(n) = path cost(n) = sum of individual edge costs
to reach the current node

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 3

7

2

2 2 4

5 4 4 4 3 6 9

3 4 7 2 4 8 6 4 3 4 2 3 9 2 5 8

Breadth vs. Uniform Cost
Breadth-first always expands the shallowest node

Only optimal if all step costs are equal

Uniform-cost considers the overall path cost

Optimal for any (reasonable) cost function

Non-zero, positive

Gets bogged down in trees with many fruitless, short
branches

Low path cost, but no goal node

Both are complete for non-extreme problems

Finite number of branches

Strictly positive search function

Depth First

Continues exploring newly generated nodes

Achieved by the TREE-SEARCH method by
appending newly generated nodes at the
beginning of the search queue

Utilizes a last-in, first-out (LIFO) queue, or stack

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Depth First Vs Breadth First

Depth-first goes off into one branch until it reaches a leaf node

Not good if the goal is on another branch

Neither complete nor optimal

Uses much less space than breadth-first

Much fewer visited nodes to keep track of

Smaller fringe

Breadth-first is more careful by checking all alternatives

Complete and optimal

Under most circumstances

Very memory-intensive

Backtracking

Variation of depth-first search

Only one successor node is generated at a time

Even better space complexity: o(m) instead of o(b*m)

Even more memory space can be saved by incrementally
modifying the current state, instead of creating a new
one

Only possible if the modifications can be undone

This is referred to as backtracking

Frequently used in planning, theorem proving

Limited Depth

Similar to depth-first, but with a limit
Overcomes problems with infinite paths

Sometimes a depth limit can be inferred or
estimated from the problem description

In other cases, a good depth limit is only known when
the problem is solved

Based on the TREE-SEARCH method

Must keep track of the depth

Iterative Deepening

Applies LIMITED-DEPTH with increasing depth limits

Combines advantages of BREADTH-FIRST and DEPTH-
FIRST methods

Many states are expanded multiple times

Doesn’t really matter because the number of those nodes is
small

In practice, one of the best uninformed search
methods

For large search spaces, unknown depth

We wanted data

We wanted data

We wanted data

We wanted data

Bidirectional

Search simultaneously from two directions
Forward from the initial and backward from the goal
state

May lead to substantial savings if it is applicable
Has severe limitations

Predecessors must be generated, which is not always
possible
Search must be coordinated between the two searches
One search must keep all nodes in memory

Search

Improving Search Methods

• Make algorithms more efficient

– Avoiding repeated states

– Utilizing memory efficiently

• Use additional knowledge about the problem

– Properties (“shape”) of the search space

• More interesting areas are investigated first

– Pruning of irrelevant areas

• Areas that are guaranteed not to contain a solution can
be discarded

Avoiding Repeated States

• In many approaches, states may be expanded
multiple times

– E.G. Iterative deepening

– Problems with reversible actions

• Eliminating repeated states may yield an
exponential reduction in search cost

– E.G. Some n-queens strategies

• Place queen in the left-most non-threatening column

Informed Search

• Relies on additional knowledge about the problem or
domain
– Frequently expressed through heuristics (“rules of

thumb”)

• Used to distinguish more promising paths towards a
goal
– May be mislead, depending on the quality of the heuristic

• In general, performs much better than uninformed
search
– But frequently still exponential in time and space for

realistic problems

Best First

• Relies on an evaluation function that gives an indication of
how useful it would be to expand a node
– Family of search methods with various evaluation functions

– Usually gives an estimate of the distance to the goal

– Often referred to as heuristics in this context

• The node with the lowest value is expanded first
– The name is a little misleading: the node with the lowest value for the

evaluation function is not necessarily one that is on an optimal path to
a goal

– If we really know which one is the best, there’s no need to do a
search

A*

• Uses the (estimated) cheapest path through
the current node

– F(n) = g(n) + h(n)
= path cost + estimated cost to the goal

– Heuristics must be admissible

• Never overestimate the cost to reach the goal

– Very good search method, but with complexity
problems

